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Abstract

We investigated by means of a simulation study how well methods for factor rotation
can identify a two-facet simple structure. Samples were generated from orthogonal
and oblique two-facet population factor models with 4 (2 factors per facet) to 12 fac-
tors (6 factors per facet). Samples drawn from orthogonal populations were sub-
mitted to factor analysis with subsequent Varimax, Equamax, Parsimax, Factor
Parsimony, Tandem I, Tandem II, Infomax, and McCammon’s minimum entropy rota-
tion. Samples drawn from oblique populations were submitted to factor analysis with
subsequent Geomin rotation and a Promax-based Tandem II rotation. As a bench-
mark, we investigated a target rotation of the sample loadings toward the corre-
sponding faceted population loadings. The three conditions were sample size (n =
400, 1,000), number of factors (q = 4-12), and main loading size (l = .40, .50, .60). For
less than six orthogonal factors Infomax and McCammon’s minimum entropy rota-
tion and for six and more factors Tandem II rotation yielded the highest congruence
of sample loading matrices with faceted population loading matrices. For six and
more oblique factors Geomin rotation and a Promax-based Tandem II rotation
yielded the highest congruence with faceted population loadings. Analysis of data of
393 participants that performed a test for the Berlin Model of Intelligence Structure
revealed that the faceted structure of this model could be identified by means of a
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Promax-based Tandem II rotation of task aggregates corresponding to the cross-
products of the facets. Implications for the identification of faceted models by means
of factor rotation are discussed.
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Consider a researcher who wants to investigate items by means of exploratory factor

analysis (EFA). Although the researcher does not know exactly which factors will

occur, she expects that there will be factors representing different measurement meth-

ods and factors representing different personality traits. Therefore, she expects that

the factors are structured into a method facet (comprising a number of method fac-

tors, e.g., a factor for self-ratings and a factor for peer ratings) and a personality trait

facet (comprising a number of trait factors). In consequence, each item measures one

trait by means of one method and should therefore load on two factors. Thereby, the

researcher follows the multitrait–multimethod approach (MTMM) of Campbell and

Fiske (1959). The MTMM approach can be regarded as a specific form of a facet

model comprising a method facet and a trait facet. ‘‘A facet is a set that is a compo-

nent of a cartesian product’’ (Shye, 1998, p. 161; Guttman, 1954). For example, a

facet A of factors a and b and a facet B of factors 1, 2, and 3 yields a cartesian prod-

uct A 3 B = C with six elements (a1, a2, a3, b1, b2, b3). The items can be classified

according to the elements of C so that each item has two substantial loadings, one

loading on factor a or b and one loading on factor 1, 2, or 3. For example, there could

be a method factor for all items from an interview, and another method factor for all

items from a trait checklist, whereas a trait facet may comprise factors for the atti-

tudes toward the father, superiors, and peers (see Campbell & Fiske, 1959, for a simi-

lar example). Since a facet contains a general attribute under which a number of

factors can be subsumed (e.g., method in MTMM), the factors within one facet need

not to be correlated. Campbell and Fiske (1959) provide several examples for models

with factors that are structured into a method facet and a trait facet. It follows from a

two-facet/MTMM model that each variable has salient loadings on two factors so that

two parallel simple structures emerge (see Table 1). However, when EFA with subse-

quent rotation toward simple structure is performed for data that can be described by

two parallel simple structures (e.g., one for the method factors and one for the traits),

there is some risk that a researcher ignores that each item loads substantially on a

method factor as well as on a trait factor. If only one salient loading of each variable

on a factor is expected and if no rotation allowing for a faceted loading pattern is per-

formed, two parallel simple structures may remain undetected, even when they are

present in the data. However, if the data have such a complex structure, the identifi-

cation of the two parallel simple structures of a two-facet model may be essential to
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obtain an interpretable loading pattern. Basically, as for all factor analyzes, the factor

rotation can improve the interpretation of the loading pattern while the overall

amount of variance explained by the factors is not altered by rotation.

One example for factor models where two salient loadings of each variable on the

factors are expected, is the bi-factor model (e.g., Holzinger & Swineford, 1937;

Reise, 2012) also known as the nested-factors model (e.g., Mulaik & Quartetti,

1997). The bi-factor model can be conceived as a specific form of a two-facet model

with only one factor in facet A (factor a) and more than one factor in facet B (e.g.,

factor 1, 2, and 3). In this context, the single factor in facet A can be regarded as a

general factor, and the factors in facet B can be regarded as specific factors. An EFA

with subsequent oblique rotation may reveal correlated first-order factors that might

be entered into second-order EFA resulting in a second-order factor. Schmid and

Leiman (1957) proposed a method that allows to transform such a higher order factor

model into a constrained bi-factor model. Moreover, Jennrich and Bentler (2011)

proposed a method that allows to perform EFA and a direct rotation toward a bi-

factor solution. Since Jennrich and Bentler (2011) already demonstrated their method

for bi-factor models, these models will not be further explored in the present study.

Moreover, there are research contexts where multiple factors may occur in each facet

so that a bi-factor model will not allow for an appropriate representation of the data.

Table 1. A Perfect Two-Facet Model With Three Factors in Each Facet.

Facet 1 Facet 2

Variable F1 F2 F3 F4 F5 F6

1 .50 .00 .00 .50 .00 .00
2 .50 .00 .00 .00 .50 .00
3 .50 .00 .00 .00 .00 .50
4 .50 .00 .00 .50 .00 .00
5 .50 .00 .00 .00 .50 .00
6 .50 .00 .00 .00 .00 .50
7 .00 .50 .00 .50 .00 .00
8 .00 .50 .00 .00 .50 .00
9 .00 .50 .00 .00 .00 .50
10 .00 .50 .00 .50 .00 .00
11 .00 .50 .00 .00 .50 .00
12 .00 .50 .00 .00 .00 .50
13 .00 .00 .50 .50 .00 .00
14 .00 .00 .50 .00 .50 .00
15 .00 .00 .50 .00 .00 .50
16 .00 .00 .50 .50 .00 .00
17 .00 .00 .50 .00 .50 .00
18 .00 .00 .50 .00 .00 .50

Note. Salient loadings are given in boldface. Facet 1 comprises factors F1, F2, and F3 and Facet 2

comprises factors F4, F5, and F6.
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Even then, a researcher might want to use EFA in order to explore a faceted struc-

ture. Therefore, we investigate whether two-facet structures based on multiple factors

can be identified by means of EFA with subsequent factor rotation.

As will be shown in the following, up to now there has been no successful explo-

ration of a priori unknown faceted structures by means of EFA of the measured vari-

ables (items or tasks). Relatedly, it should be noted that the utility of EFA for the

investigation of faceted structures has been questioned and that smallest space analy-

sis has been proposed as a method that may lead to a more parsimonious representa-

tion of the data (e.g., Guttman & Levy, 1991; Schlesinger & Guttman, 1969). These

critical views might have discouraged a systematic investigation of the possibility to

identify faceted structures by means of EFA with subsequent factor rotation. In spite

of that, with the present study, we perform a systematic investigation of orthogonal

and oblique two-facet structures by means of a simulation study to shed some light

on this topic. An EFA approach to faceted structures is also of interest because the

CFA approach has encountered problems with the identification of secondary load-

ings. Whereas fixing secondary loadings to zero is often unrealistic, the specification

of a few freely estimated secondary loadings by means of successive model modifi-

cations also bears a number of problems (MacCallum et al., 1992). Exploratory struc-

tural equation modeling (ESEM) has been proposed to overcome these problems

(Asparouhov & Muthén, 2009). Within the ESEM approach exploratory factor rota-

tion is performed to estimate the measurement models. As faceted factor models

may be incorporated into ESEM (e.g., within the MTMM approach), it is of interest

how well available methods of factor rotation can identify faceted loading patterns.

Previous Approaches

Nevertheless, there have been attempts to use EFA in order to explore faceted struc-

tures. For example, Guilford (1967, 1975, 1988) tried to establish facets for the clas-

sification of intelligence factors (Operation, Content, Product) in the structure-of-

intellect model. For each combination (cross-product) of Operations, Contents, and

Products a factor was postulated. Guilford (1967) used EFA in combination with

visual rotation and Procrustes/Target rotation to establish the factors postulated of the

structure-of-intellect model. However, his way of providing evidence by means of

factor rotation was not very compelling (Guttman & Levy, 1991; Süß & Beauducel,

2005). Another problem of Guilford’s model was that the number of postulated fac-

tors was extremely large (more than 100), so that it was nearly impossible to demon-

strate all these factors and their faceted structure with the limited number of

variables/tasks per factor within a single EFA.

Another use of EFA to demonstrate a faceted structure of intelligence was per-

formed by Jäger (1982, 1984), who proposed the Berlin Model of Intelligence

Structure (BIS). Jäger started from EFAs of a very large set of intelligence tasks and

identified a general intelligence factor, a facet comprising the four operation factors

processing speed (S), memory (M), creativity (C), and reasoning/processing capacity
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(R), and a facet comprising the three content factors figural intelligence (F), verbal

intelligence (V), and numerical intelligence (N). Although the number of measured

variables/tasks per factor was larger in Jäger (1982, 1984) than in Guilford (1967),

the demonstration of a faceted intelligence structure by means of EFAs was only pos-

sible, when the measured variables/tasks were aggregated according to the operation

facet or according to the content facet. Thus, for EFA of the operation facet, tasks

were aggregated across content, resulting in task aggregates containing operation-

homogeneous and content-heterogeneous tasks. For example, a processing speed

aggregate comprised a verbal, a figural, and a numerical processing speed task.

When three to five operation homogenous task aggregates per operation factor were

formed, this resulted in 13 to 16 operation homogeneous aggregates. When these

operation-homogeneous aggregates were entered into EFA, the four operation factors

clearly emerged (Beauducel & Kersting, 2002; Jäger, 1982, 1984; Jäger et al., 1997).

Similarly, when nine content homogenous task aggregates were entered into EFA,

the three content factors could be demonstrated in these studies. Finally, when opera-

tion homogeneous and content homogeneous aggregates were entered simultaneously

into EFA, the four operation factors and the three content factors were found (Jäger,

1982). Although the facet structure could clearly be found by means of EFAs of task

aggregates, they were not based on EFAs of the tasks themselves. The use of task

aggregates implies that some knowledge on the facets is already available so that the

analysis is not purely exploratory, even when EFA is used. To sum up, Guilford

(1967) used Target rotation and Jäger (1982) used a priori task aggregation for the

demonstration of faceted structures. Thus, in the domain of intelligence structure,

until now, faceted models have not been demonstrated by means of a purely explora-

tory and direct investigation of the measured variables by means of EFA.

In addition to EFA with subsequent Target rotation, EFA based on facet-

homogeneous task aggregates, or smallest space analysis (Pfister & Jäger, 1992;

Jäger et al., 1997), confirmatory factor analysis (CFA) has also been used for the

investigation of faceted structures. Similarly, MTMM data have also been analyzed

by means of CFA or alternative structural equation models (Marsh & Bailey, 1991).

In the domain of intelligence research, CFA of facet-homogeneous aggregates has

been used for the demonstration of the faceted structure of the BIS (Bucik &

Neubauer, 1996; Süß et al., 2002). Moreover, 12 task aggregates corresponding to

the cross-products of the four factors of the operation facet with the three factors of

the content facet have been used in order to demonstrate simultaneously the opera-

tion factors and content factors of the BIS (Bucik & Neubauer, 1996; Süß &

Beauducel, 2015). It should be noted that only the four operation factors could be

shown by means of EFA of the 12 task aggregates corresponding to the cross-

products (Bucik & Neubauer, 1996). Thus, the complete BIS facet structure could

not be shown by means of an EFA of the 12 cross-product aggregates, whereas it

could be shown by means of CFA. Since Bucik and Neubauer (1996) performed the

EFA and the CFA for the same data set with the same 12 aggregates, the difference

between the EFA- and CFA-results indicates that the problems with showing the
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complete facet structure by means of EFA could be due to methodological aspects

related to EFA.

Further indications that the analysis of faceted structures could be a problem even

for CFA can be found in Grayson and Marsh (1994), who investigated model identifi-

cation issues of faceted CFA models from the perspective of the MTMM (Campbell

& Fiske, 1959). According to the MTMM approach, a CFA should contain factors

representing the relevant traits in one facet and factors for the measurement methods

in another facet. Therefore, MTMM models can be regarded as a specific form of

facet models (Süß & Beauducel, 2005), so that the results obtained algebraically by

Grayson and Marsh (1994) for CFAs of MTMM data are also relevant for other

faceted CFA models. Grayson and Marsh (1994) showed that the loading matrix is

rank deficient for MTMM models. More specifically, they showed that the rank of an

MTMM loading matrix equals the number of trait factors plus the number of method

factors minus one. They also showed that the deficient rank of the loading matrix has

consequences for model identification. For example, MTMM CFA models are not

identified in a model where the correlations between all factors, are freely estimated.

This model is referred to as the correlated traits and methods (CTM) model. Even

when only within-trait factor correlations and only within-method factor correlations

are freely estimated whereas all correlations of trait-factors with method-factors are

fixed to zero, the MTMM CFA models are not identified. This model is the corre-

lated traits, correlated methods (CTCM) model. However, when correlations between

the trait-factors are freely estimated and when the intercorrelations between method

factors as well as the correlations of trait factors with method factors are fixed to

zero, the MTMM CFA model will typically be identified when there are at least three

trait factors and three method factors. This model is termed the correlated traits,

uncorrelated methods (CTUM) model.

To provide an identified MTMM CFA model, Eid (2000) proposed a model with

correlated trait factors, correlated method factors, uncorrelated trait and method fac-

tors, and one method factor less than methods in the measured variables. Moreover,

each variable of this model should be measured with only one method. The model is

termed the correlated traits, correlated methods minus one (CTC(M-1)) model. This

model implies that one method, is chosen as a comparison standard (Eid, 2000; Eid

et al., 2003). For this reference method, no factor is defined so that the rank of the

loading matrix corresponds to the result obtained by Grayson and Marsh (1994).

Although CTC(M-1) models are probably well suited for the investigation of MTMM

matrices (Eid, 2000), the idea that a one method factor is omitted as a reference stan-

dard, cannot easily be transferred to facet models outside the MTMM framework.

Moreover, when the focus is on EFA, as in the present case, one would not know

which factor should be omitted, because the factors are a priori unknown.

To summarize, it can be learned from CFAs of MTMM matrices that it is more

easy to show facet models by means of CFA than by means of EFA and that the col-

umn rank of a two-facet loading matrix corresponds to the number of trait factors plus

the number of method factors minus one and that this can lead to identification
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problems of CFA models that have been resolved in the MTMM context by means of

specific modeling techniques (e.g., Eid et al., 2003).

An Approach for EFA

In the context of EFA, the rank deficiency of faceted loading structures (Eid, 2000;

Grayson & Marsh, 1994) could lead to the problem that too many factors are retained

for rotation of a faceted structure. That a two-facet loading matrix comprising q fac-

tors is based on q2 1 unrotated, nonfaceted factors should be taken into account

when EFA of faceted structures is intended. Accordingly, q2 1 unrotated factors

have to be extracted and rotated in order to identify q faceted factors. A four-step

procedure is proposed here to identify q faceted factors for p variables by means of

EFA:

1. Retain the unrotated loading matrix Lq from an extraction of q factors,

2. Retain the unrotated loading matrix Lq21 from an extraction of q2 1 factors

and concatenate Lq21 with a p3 1 vector of zeroes resulting in Lq21,0.

3. Perform orthogonal Procrustes/target rotation (Schönemann, 1966) of Lq21,0

toward Lq as a target matrix, resulting in Lq,q21 a p3q loading matrix, but

with rank q2 1.

4. Perform exploratory factor rotation of Lq,q21.

Having q columns and rank q2 1, Lq,q21 has the same properties as a faceted load-

ing matrix so that it is possible to identify a faceted loading structure by means of an

appropriate method of factor rotation.

In addition to the problem of the number of factors to extract, factor rotation may

also be a problem for faceted structures. The original definition of simple structure,

as it has been proposed by Thurstone (1947), allows for salient loadings of a variable

on more than one factor. However, criteria that have been proposed for analytic rota-

tion toward simple structure try to identify a perfect simple structure of minimal

complexity (Browne, 2001), which is sometimes termed an independent clusters

solution or a perfect cluster configuration. Thus, the focus of typical rotation criteria

and methods of factor rotation is not on the identification of complex loading pat-

terns as they occur in the context of faceted structures but on a perfect simple struc-

ture within one facet. It is therefore not surprising that simulation studies for the

evaluation of methods of factor rotation were typically also based on simple structure

models with salient loadings of each variable on only one factor (Velicer & Jackson,

1990). Although degraded simple structures with some substantial secondary load-

ings have sometimes been investigated (Schmitt & Sass, 2011; Weide & Beauducel,

2019) these degraded structures did not correspond to a faceted loading pattern.

Since Guilford (1967) used target rotation, Jäger (1982) used a priori task aggregates,

and simulation studies used only degraded simple structures one can conclude that

population loading patterns representing more than one facet have not been explored
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systematically by means of EFA and subsequent (purely) explorative rotation toward

simple structure.

The present study is an attempt to start to close this gap by means of a simulation

study and an empirical study exploring the performance of available methods of rota-

tion toward simple structure when a two-facet simple structure was to be expected.

Although conventional rotation methods toward simple structure might not necessa-

rily be suitable for the rotation of faceted structures, it can nevertheless not be

excluded that some of them are more suitable than others. Moreover, the perfor-

mance of at least some rotation methods is probably not really bad because a faceted

structure implies that a perfect simple structure can be expected within each facet.

Since a perfect population simple structure within each facet is expected, we expect

that orthogonal methods of factor rotation toward simple structure as they have been

described in Browne (2001) may be able to recover the faceted simple structure to

some degree. However, Comrey’s (1967) Tandem II rotation method deserves spe-

cial attention here because it attempts to distribute the variance on as many factors

as possible so that variables that are uncorrelated do not load on the same factor. As

mentioned above, rotation toward a faceted loading matrix implies that a loading

matrix with rank q2 1 has to be rotated in order to represent q factors. Since the

Tandem II rotation attempts to distribute the variance on the q factors it should be

especially suitable for the identification of faceted loading structures from loading

matrices with rank q2 1.

To sum up, the aim of the present study is to explore which rotation methods are

most suitable for the identification of a two-facet simple structure in the sample when

a two-facet simple structure is given in the population. We consider a large number

of rotation methods, orthogonal methods will be compared for orthogonal two-facet

models and oblique rotation methods will be compared for oblique two-facet models.

The focus will be on those rotation methods for which population two-facet models

can be identified. Rather conventional orthogonal methods of factor rotation such as

Varimax (Kaiser, 1958) and Equamax (Saunders, 1962) as well as more specialized

methods such as Parsimax, Factor Parsimony (Crawford & Ferguson, 1970), Infomax

(McKeon, 1968), and McCammon’s (1966) minimum entropy rotation will be con-

sidered, but it is expected that Comrey’s Tandem II rotation will perform quite well.

Although it is not expected to be especially suitable for faceted structure, the Tandem

I rotation will also be considered for orthogonal models in order to investigate

Comrey’s (1967) methods comprehensively. Oblique facet models for the population

were considered for Oblimin rotation (with delta = 0; Jennrich & Sampson, 1966), for

oblique versions of Equamax, Parsimax, and Factor Parsimony rotation, as well as for

Geomin rotation (Yates, 1987). Since Tandem II rotation is a promising orthogonal

method for the rotation toward facet structures, an oblique Tandem II rotation was

performed by means of the procedure proposed by Hendrickson and White (1964) for

Promax rotation. A target pattern based on the power of the Kaiser-normalized

Tandem II loading pattern was used for oblique Target rotation. Thus, instead of

using Varimax-rotation as prerotation method (as usual for Promax rotation)
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orthogonal Tandem II is proposed to be used as a prerotation method for further obli-

que rotation of correlated facet structures. In the following, this method will be

denoted as Promax-based Tandem II rotation.

Method

The data generation and all data analyses were based on IBM SPSS Version 24.

SPSS syntax examples for data generation and analysis of orthogonal and oblique

models are given in the Supplementary Material (available online). For the simula-

tion study population factor models based on an equal as well as a slightly unequal

number of factors were investigated resulting in nine population models comprising

2 + 2, 2 + 3, 3 + 3, 3 + 4, 4 + 4, 4 + 5, 5 + 5, 5 + 6, and 6 + 6 factors so that

the overall number of factors was q = 4, . . ., 12. The size of the factor population

main loadings was manipulated to be l = .40, .50, or .60. A perfect simple structure

was realized within each facet. A perfect two-facet simple structure model based on l

= .50 and 3 + 3 factors is given in Table 1. Orthogonal rotation methods were com-

pared for two-facet population models based on uncorrelated factors, whereas oblique

rotation methods were compared for population models based on factor intercorrela-

tions of rf = .30 between all factors. Since rf = .40 would have resulted in a commun-

ality greater one for l = .60, a factor intercorrelation of rf = .30 was investigated to

use the same size of factor intercorrelations for all loading sizes of the oblique popu-

lation models.

The sample sizes investigated were n = 400 or 1,000. This leads to 27 population

loading matrices L (= 9 faceted models 3 3 loading sizes) that were investigated for

rf = .00 and rf = .30 leading to 108 conditions of the simulation study (= 27 popula-

tion loading matrices 3 2 levels of factor inter-correlations 3 2 sample sizes). For

each condition 1,000 samples were generated according to the following heuristic:

For each participant q common factor scores fc and p unique factor scores fu were

generated from normal distributions with m = 0 and s = 1 by the method of Box and

Muller (1958) from uniformly distributed numbers, which have been generated by

the Mersenne twister integrated in SPSS. Observed variable scores x were generated

from the factor scores by means of the factor model, with x = Lfc + diag(1-LL0)1/2fu.

The observed variables of each sample were submitted to iterative principal axis fac-

tor analysis for the extraction of q2 1 factors and with subsequent rotation of q fac-

tors by means of the four-step procedure described above. For the population models

based on uncorrelated factors, the following orthogonal rotation methods were com-

pared: Varimax, Equamax, Parsimax, Factor Parsimony, Tandem I, Tandem II,

Infomax, and McCammon’s (minimum entropy) rotation. For the population models

based on correlated factors, the following oblique rotation methods were compared:

Oblique versions of Equamax, Parsimax, Factor Parsimony rotation, Oblimin,

Geomin, and a version of Promax rotation (Hendrickson & White, 1964) based on

orthogonal Tandem II prerotation. The rotation methods were based on Bernaards

and Jennrich’s (2005) gradient projection algorithm (see Jennrich, 2001). As a
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benchmark, orthogonal target rotation (Schönemann, 1966) toward the faceted popu-

lation loadings was investigated for the population models based on uncorrelated fac-

tors, and oblique target rotation was investigated for the population models based on

correlated factors. The dependent measure was the coefficient of congruence

(Tucker, 1951) of the rotated sample loading matrices with the respective population

loading matrix with a perfect two-facet simple structure. The mean coefficient of

congruence M(c) was computed as an average of the congruence coefficients of the

sample loadings of each factor with the corresponding population factor loadings.

Since the population models represent perfect faceted simple structures without any

distortion that might occur due to measurement error, a rotation method that is able

to identify faceted loading patterns in the sample should have a large M(c).

Therefore, M(c) . .98 was used as a criterion for a very good identification of the

faceted loading patterns.

Two additional analyses were reported for the l = .50 (n = 400, 1,000) condition

of the orthogonal population models to investigate the robustness of the results of the

overall simulation study. It has been shown that a number of different starting solu-

tions might improve the performance of the gradient projection algorithm for factor

rotation (Weide & Beauducel, 2019). As random starts need a substantial amount of

computation time, an additional simulation was performed with only 200 runs for 10

conditions: The orthogonal population models with 2 + 2, 3 + 3, 4 + 4, 5 + 5, and

6 + 6 factors (= 5 population models 3 2 sample sizes) to compare the sample aver-

age M(c) for 20 random start solutions with the sample average M(c) reached with a

single start solution in the overall simulation. Moreover, the root mean squared error

(RMSE) was computed for each orthogonal loading matrix as the root mean squared

difference between the sample and orthogonal population loading matrices to investi-

gate whether the results are similar to those found with the coefficient of congruence.

Results

Simulation Results for Orthogonal Population Models

The congruences (averaged across the factors of a model) of rotated population load-

ings with the two-facet population model with l = .40 are reported in Figure 1 (A and

B). For Equamax, Parsimax, Factor Parsimony, and Tandem II rotation of the popula-

tion loading matrices, a nearly perfect congruence with the population two-facet mod-

els occurred for q = 8 factors. The congruence of the rotated population loading

matrices with the two-facet population loading matrices increased with q for these

methods (Figure 1A). For Varimax, Infomax, Tandem I, and McCammon rotation the

congruence of the population rotated loading matrices with the population two-facet

models did not show a systematic pattern (Figure 1B). Whereas the congruence was

generally low for Varimax, Tandem I, and McCammon’s rotation, some nearly per-

fect congruences occurred for Infomax rotation and one nearly perfect congruence
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Figure 1. Population congruence (c) in (A) and (B), sample average of M(c) for orthogonal
loading matrices with orthogonal population two-facet simple structure for l = .40 in (C) to
(F); the model axis gives the number of factors for each of the two facets; the error bars
mark the 95% confidence interval.
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occurred for McCammon’s rotation. Although M(c), the average congruence of

rotated sample loadings with the corresponding two-facet population loadings, was

generally lower than the congruences of the rotated population loadings with the two-

facet population loadings, the pattern of results was similar (Figure 1C-F). M(c) for

orthogonal Target rotation of the sample loadings toward the population loadings is

reported as a reference line. An increase of M(c) with q was observed for Equamax,

Parsimax, Factor Parsimony, and Tandem II (Figure 1C and E). Such a tendency was

not observed for Varimax, Tandem I, Infomax, and McCammon’s minimum entropy

(Figure 1D and F). It should be noted that M(c) was greater than .98 only for the

Target rotation for n = 1,000 and that for n = 400 and q . 5 even Target rotation did

not reach an M(c) greater than .98. It can be concluded that for l = .40 a two-facet

orthogonal simple structure cannot easily be identified with EFA.

For l = .50, the pattern of congruences of rotated population loadings with popula-

tion two-facet models was similar to the pattern for l = .40 (Figure 2A and B).

Whereas a nearly perfect congruence was found for q� 8 for Equamax, Parsimax,

Factor Parsimony, and Tandem II rotation (Figure 2A), a rather unsystematic pattern

occurred for Infomax and McCammon’s rotation while Varimax and Tandem I rota-

tion yielded generally low congruences (Figure 2B). This pattern of results was also

found for the M(c) average across samples (Figure 2C-F). For n = 1,000, the sample

average of M(c) is greater than .98 for Tandem II rotation when q� 6 (with three

and more factors in each facet) and Equamax, Parsimax, and Factor Parsimony reach

an average M(c) greater than .98 for q� 10 (see Figure 2C). There is no rotation

method with an average M(c) greater than .98 for q \ 6, n = 1,000, but it should be

noted that Infomax rotation had the largest average M(c) for these small population

models (see Figure 2D). For l = .50 and n = 400 only the Target rotation reached an

average M(c) greater than .98, but Tandem II rotation yielded still the largest average

M(c) for q� 6, and Infomax rotation yielded the largest average M(c) for q \ 6. As

an example, the sample average Tandem II rotated loadings for q = 6, l = .50 and n =

400 are given in Table 2. Even when M(c) is slightly below .98 for these models (see

Figure 2E), the averages of the loadings are close to the population loadings and the

standard deviations of the loadings are � .10. To sum up, for l = .50, n = 400 and

q� 6 a satisfying exploratory rotation of two-facet orthogonal loading patterns by

means of Tandem II rotation is possible, and with n = 1,000 it is rather likely to

reveal a q� 6 two-facet model by means of Tandem II rotation. However, small

sample sizes could substantially impair the possibility to identify faceted loading pat-

terns for l = .50.

For l = .60, the congruence of rotated population loadings with population two-

facet loadings was nearly perfect for Tandem II and Factor Parsimony rotation for

q� 6 and it was nearly perfect for Parsimax and Equamax rotation for q� 7

(Figure 3A). No systematic increase of congruences with q occurred for the remain-

ing methods (Figure 3B). Tandem II rotation reached a sample average M(c) greater
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Figure 2. Population congruence (c) in (A) and (B), sample average of M(c) for orthogonal
loading matrices with orthogonal population two-facet simple structure for l = .50 in (C) to
(F); the model axis gives the number of factors for each of the two facets; the error bars
mark the 95% confidence interval.
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than .98 for q� 6 for n = 1,000 (Figure 3A) as well as for n = 400 (Figure 3C).

Equamax rotation reached an average M(c) greater than .98 for q� 7 for n = 1,000

(Figure 3A) and for q� 8 for n = 400 (Figure 3C). Infomax rotation had the largest

average M(c) for q \ 6; however, the average M(c) does not reach .98 (see

Figure 3B, 3D). Thus, for q� 6, l� .60, and n� 400, there is a good chance that

an orthogonal two-facet loading pattern (i.e., given in the population) can be identi-

fied in the sample by means of Tandem II rotation. For q \ 6, l� .60, and n� 400

one may try out Infomax rotation, but the chance to identify a given orthogonal two-

facet loading pattern in the sample is not very high.

An investigation of the effect of the number of random starts was also performed.

For n = 1,000, the random starts reduced the sample average M(c) for Equamax,

Parsimax, and Factor Parsimony rotation, but they did not alter the sample average

M(c) for Tandem II rotation (see Supplemental Figure S1A and B). Moreover, the

random starts considerably improved M(c) for McCammon’s rotation although M(c)

was not very high even after the improvement (Supplemental Figure S1C and D).

Although the random starts only slightly improved M(c) for Infomax rotation, the

Table 2. Mean (SD) of Tandem II Rotated Loadings for 1,000 Samples With n = 400 Drawn
From a Population Model With Two-Facets and Three Factors in Each Facet.

Facet 1 Facet 2

Variable F1 F2 F3 F4 F5 F6

1 .49 (.07) .01 (.07) .00 (.07) .48 (.10) .00 (.07) .00 (.07)
2 .49 (.08) .00 (.06) .00 (.07) .00 (.08) .48 (.09) .00 (.08)
3 .49 (.07) .00 (.07) .00 (.07) .00 (.08) .00 (.08) .48(.09)
4 .49 (.08) .01 (.07) .00 (.07) .48 (.10) .01 (.07) .00(.07)
5 .49 (.07) .00 (.06) .00 (.07) .00 (.07) .48 (.09) .00(.08)
6 .49 (.07) .00 (.07) .00 (.07) .00 (.08) .00 (.08) .48 (.09)
7 .00 (.07) .49 (.07) .00 (.07) .48 (.09) .00 (.08) .00 (.07)
8 .00 (.07) .49 (.07) .01 (.07) .00 (.08) .48 (.09) .00 (.08)
9 .00 (.07) .49 (.08) .00 (.07) .00 (.07) .00 (.08) .48 (.09)
10 .00 (.07) .49 (.07) .00 (.06) .48 (.09) .01 (.07) .00 (.07)
11 .00 (.07) .49 (.07) .00 (.07) .00 (.07) .48 (.09) .00 (.08)
12 .00 (.07) .49 (.07) .00 (.07) .00 (.07) .01 (.08) .48 (.09)
13 .01 (.07) .00 (.07) .49 (.07) .48 (.10) .00 (.07) .00 (.08)
14 .00 (.07) .00 (.06) .49 (.08) .00 (.08) .48 (.08) .00 (.08)
15 .00 (.07) .00 (.07) .49 (.07) .00 (.07) .00 (.07) .48 (.10)
16 .00 (.07) .00 (.07) .49 (.07) .48 (.10) .00 (.07) .00 (.08)
17 .00 (.07) .00 (.06) .49 (.07) .00 (.08) .49 (.08) .00 (.08)
18 .00 (.07) .00 (.07) .49 (.07) .00 (.08) .00 (.07) .48 (.10)

Note. Mean loadings . .30 are given in boldface. Facet 1 comprises Factors F1, F2, and F3 and Facet 2

comprises Factors F4, F5, and F6.
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Figure 3. Population congruence (c) in (A) and (B), sample average of M(c) for orthogonal
loading matrices with orthogonal population two-facet simple structure for l = .60 in (C) to (F);
the model axis gives the number of factors for each of the two facets; the error bars mark the
95% confidence interval. The population congruences for McCammon’s rotation are all \.86.
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resulting M(c) was close to .96 for n = 1,000 and q� 10, indicating that Infomax

could be an appropriate method with a larger number of random starts. Again, for q

\ 6 Infomax outperforms Tandem II rotation (Supplemental Figure S1E and F). For

n = 400 the random starts tend to reduce the sample average M(c) for all methods

except McCammon’s and Infomax rotation, which outperforms Tandem II rotation

for q \ 8 (Supplemental Figure S1G and H).

The analysis for the sample averaged RMSE yielded similar results as M(c) in that

Tandem II rotation yielded the smallest RMSE for q� 6 (see Supplemental Figure

S2A and C). However, McCammon’s minimum entropy and not Infomax rotation

yielded the smallest RMSE for q \ 6, although the difference was small

(Supplemental Figure S2B and D). This indicates that the results obtained for M(c)

with Tandem II rotation were robust but that Infomax rotation or McCammon’s rota-

tion might be considered for q \ 6. To summarize, the results of the simulation study

for orthogonal models reveal that Tandem II, Infomax, and McCammon’s rotation

could reveal faceted EFA loading patterns and that, overall, Tandem II rotation

yielded the highest congruence of rotated loadings with orthogonal population two-

facet models.

Simulation Results for Oblique Population Models

Overall, the congruence of rotated population loadings with corresponding oblique

two-facet population loadings was not large for oblique Equamax, Parsimax, and

Factor Parsimony rotation (Figures 4B, 5B, and 6B). However, Geomin (with e =

0.1) and Promax-based Tandem II rotation (with Power = 2) of population loadings

resulted in high congruences with population loadings for l = .40 (Figure 4A) and l =

.50 (Figure 5A) and in nearly perfect congruence for l = .60 and q� 6 (Figure 6A).

It was therefore decided to perform the sample-based simulations only for Geomin

and Promax-based Tandem II rotation.

M(c) for averaged rotated sample loadings with two-facet population loadings

was below .90 for q . 7 and l = .40 (Figure 4C and 4D), greater than .90 for l =

.50, q� 11, and n = 1,000 (Figure 5C) and about .95 for l = .60, q . 6, and n =

1,000 (Figure 6C). M(c) was larger for Geomin rotation than for Promax-based

Tandem II rotation. The effect of sample size was substantial for l = .40 (Figure 4)

and was rather small for larger salient loadings. Overall, the congruence of rotated

sample loadings with two-facet population loadings was smaller for oblique models

than for orthogonal models.

Empirical Study

A convenience sample of 393 voluntary German participants (159 females; age in

years: M = 15.38, SD = 0.89) worked on the BIS-4 test (Jäger et al., 1997) compris-

ing 45 tasks representing the two-facet structure of the BIS. Participants provided
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verbal informed consent. The study was conducted in accordance with the World

Medical Association’s Declaration of Helsinki and approved by the ethics board of

the Institute of Psychology (Freie Universität Berlin, Germany). The intercorrelation

of the tasks and the classification of the tasks according to the facets of the BIS is

shown in Supplemental Table S1. As the simulation study revealed that Tandem II

rotation is promising for orthogonal rotation of two-facet models and that Promax-

Figure 4. Population congruence (c) in (A) and (B) and sample average of M(c) in (C) and
(D) for oblique loading matrices with oblique population two-facet simple structure for l =
.40, factor-intercorrelation rf = .30; the model axis gives the number of factors for each of the
two facets; the error bars mark the 95% confidence interval. ‘‘PTandem II’’ denotes
orthogonal Tandem II pre-rotation followed by Promax (Power = 2) rotation.
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based Tandem II rotation can be performed to find oblique two-facet models, we per-

formed Tandem II rotation and a Promax-based Tandem II rotation based on an EFA

of the 12 task aggregates corresponding to the cross-products of the BIS factors. This

allows to directly compare the orthogonal Tandem II solution with the corresponding

Promax-based oblique solution, so that the comparison of the orthogonal and oblique

solution is not confounded with a change of the criterion for optimal rotation. The

intercorrelation of the 12 task aggregates is given in the Supplemental Table S2.

First, q2 1 = 6 factors were extracted and q = 7 factors were rotated according to the

four-step procedure described in the introduction. The congruence of the Tandem II

Figure 5. Population congruence (c) in (A) and (B) and sample average of M(c) in (C) and
(D) for oblique loading matrices with oblique population two-facet simple structure for l =
.50, factor-intercorrelation rf = .30; the model axis gives the number of factors for each of the
two facets; the error bars mark the 95% confidence interval. ‘‘PTandem II’’ denotes
orthogonal Tandem II pre-rotation followed by Promax (Power = 2) rotation.
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loadings with a pattern of ideal BIS loadings was .85. All BIS factors, with exception

of the figural intelligence factor (F) were identified. Although the congruence of the

Promax-based Tandem II target loading pattern with the ideal BIS loadings was only

slightly larger (.86), the combination of salient and nonsalient loadings corresponds

to the expected BIS loading pattern (see Table 3) and the figural intelligence factor

is found. Thus, the four operation factors (S, M, C, R) and the three content factors

(F, V, N) of the BIS were clearly found in the Promax-based Tandem II solution.

Figure 6. Population congruence (c) in (A) and (B) and sample average of M(c) in (C) and
(D) for oblique loading matrices with oblique population two-facet simple structure for l =
.60, factor-intercorrelation rf = .30; the model axis gives the number of factors for each of the
two facets; the error bars mark the 95% confidence interval. ‘‘PTandem II’’ denotes
orthogonal Tandem II pre-rotation followed by Promax (Power = 2) rotation.
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The factor inter-correlations are rather small, which could be due to the faceted struc-

ture, but also to the rather age-homogeneous sample.

Discussion

It was investigated by means of a simulation study how well loading patterns with a

two-facet simple structure can be identified by means of rotation methods used in

EFA. For population models based on uncorrelated factors orthogonal Target rota-

tion, Varimax, Equamax, Parsimax, Factor Parsimony, Tandem I, Tandem II,

Infomax, and McCammon’s rotation were investigated. For population models based

on correlated factors oblique Target rotation, oblique versions of Equamax, Parsimax,

Factor Parsimony, Oblimin, Geomin, and a Promax-based Tandem II rotation were

investigated. The congruence of the sample loading pattern with corresponding popu-

lation two-facet loading patterns and the RMSE between sample loading pattern and

population loading pattern were investigated.

When q2 1 factors were extracted and q factors were rotated by means of a four-

step procedure described in the introduction, the results for uncorrelated factors were

as follows: With an increasing number of factors, Equamax, Parsimax, Factor

Parsimony, and Tandem II rotation of population data resulted in a nearly perfect

representation of two-facet simple structures. In line with these results, orthogonal

Target rotation of sample data resulted in mean congruences greater than .98 with

the two-facet population models when the salient loadings were greater than .50.

When the salient loadings were .40 mean congruences greater than .98 only occurred

with n = 1,000. To sum up, orthogonal two-facet loading patterns can be identified

by means of EFA when the salient loadings are greater than .50 or with very large

sample sizes. For the population models based on correlated factors only Geomin

and Promax-based Tandem II rotation of population data resulted in a nearly perfect

representation of two-facet simple structures. Therefore, only these two methods

were investigated in the simulation study based on samples. Even with salient load-

ings of .60 and n = 1,000 cases only a mean congruence of .95 was obtained. This

indicates that the identification of oblique two-facet simple structures is possible but

more difficult than the identification orthogonal two-facet simple structures. Overall,

the results imply that large sample sizes are needed for the identification of two-facet

loading patterns by means of EFA and subsequent factor rotation.

In an empirical example based on data from an intelligence test, the two-facet BIS

model was identified on the level of task aggregates corresponding to the cross-

products of the BIS factors by means of EFA with subsequent Promax-based Tandem

II rotation. This result is remarkable because only the four BIS operation factors have

previously been found in EFA of the 12 task aggregates corresponding to the cross-

products (Bucik & Neubauer, 1996). However, Bucik and Neubauer (1996) used

Varimax rotation for which the simulation study reveals that it is not suitable for the

identification of faceted loading patterns. Moreover, the comparison of the oblique

Promax-based Tandem II solution with the orthogonal Tandem II solution reveals that
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the identification of an empirical two-facet model can be facilitated by means of obli-

que rotation. This result was not obtained in the simulation studies because in these

studies orthogonal rotation methods were performed for orthogonal two-facet popula-

tion models, whereas here, the orthogonal Tandem II rotation was performed for the

slightly oblique two-facet BIS data. The strategy to perform an orthogonal Tandem II

rotation followed by a Promax-based Tandem II oblique rotation could help find a

two-facet solution when it is a priori unknown whether an orthogonal or oblique

model is most appropriate for a given data set.

Limitations

A main limitation of the present study is due to the search space of the simulation

study. Aspects that are not covered by the present simulation study are the systematic

investigation of the effect of the number of variables per factor (which was rather

small in the present study) and the effect of variable population main loadings. Of

course, a further limitation is that three-facet models were not considered. However,

the results for the two-facet models indicate that it would be even more difficult to

identify such complex models by means of factor rotation.

Conclusion

It is concluded that orthogonal two-facet models can best be identified by means of

EFA with subsequent Infomax, McCammon rotation for a small number of factors

and with subsequent Tandem II rotation for a larger number of factors, but that a

rather high data quality is necessary. Oblique two-facet models can be identified by

means of Geomin and Promax-based Tandem II rotation. Although Geomin rotation

was slightly superior to Promax-based Tandem II rotation, the empirical example

shows that the combination of the orthogonal Tandem II rotation with the corre-

sponding Promax-based Tandem II rotation may reveal the advantages of oblique-

ness without alternation of the basic rotational criterion. Therefore, we recommend

the combination of Tandem II and Promax-based Tandem II rotation when it is

unknown whether a model should be oblique. When an oblique structure can clearly

be expected Geomin rotation should be performed. In any case, the sample size

should be large and the main factor loadings should be about .50. However, besides

the requirements of high data quality there are no fundamental barriers to the identi-

fication of two-facet simple structures by means of EFA with subsequent factor

rotation.
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Süß, H.-M., & Beauducel, A. (2005). Faceted models of intelligence. In O. Wilhelm & R.

Engle (Eds.). Understanding and measuring intelligence (pp. 313-332). Sage.
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